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Japan
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Abstract. The non-stationary Schrödinger equation in a finite basis of states is considered for
the Hamiltonian matrix linearly depending on time. Exact analytical solutions of asymptotic
transition probabilities are obtained for a bow-tie model, in which an arbitrary number of linear
time-dependent diabatic potential curves cross at one point and only a particular horizontal curve
has interactions with the others. Based on the contour integral method used, some mathematical
aspects such as a possible generalization of the Whittaker functions are also briefly discussed.

1. Introduction

Exactly solvable model problems which describe interactions among several closely coupled
states (channels) are of interest for many branches of physics. They could be subdivided
into non-stationary and stationary models stemming respectively from the time-dependent
and time-independent Schrödinger equations. Another subdivision is the one- into two-state
and multistate models.

The difficulties in obtaining exact solutions increase from non-stationary to stationary
and from two-state to multistate models. Historically the first and most famous model is
due to the independent papers by Landau (1932) and Zener (1932). Since in the same year
Majorana (1932) also suggested and solved such a model, probably the more justifiable name
would be the Landau–Zener–Majorana model, but we use the traditional terminology below‡.
This was the non-stationary two-state model. Since that time a number ofnon-stationary
two-state modelswere suggested (Nikitin and Umanskii 1984, Demkov and Ostrovsky
1988). Somestationary two-state modelswere also solved exactly (Osherov and Voronin
1994, Osherov and Nakamura 1996), among which the recent achievement in the case of
the stationary Landau–Zener–Stueckelberg problem by Zhu and Nakamura should be noted
(Nakamura and Zhu 1996, Nakamura 1996, Zhu and Nakamura 1994, 1995).

As for themultistate models, the number of exact solutions remains quite limited even
in the non-stationary formulation§. The solutions of some (resonance) three-state models
are generated by the solutions of two-state models (see Hioe 1984 and references therein).

† Visiting professor of IMS. Permanent address: Institute of Physics, The University of St Petersburg, 198904 St
Petersburg, Russia.
‡ As a curiosity we refer also to the paper by Wannier (1965) who 33 years later considered the same model
apparently unaware of the other publications on the subject.
§ It seems that the only exactly solvablestationary multistate modelknown nowadays is the quantum version of
the Demkov–Osherov model (1967).
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The class ofN -state models for an arbitrary numberN originates from the problem of a
particle with the spinj = 1

2(N − 1) in a time-dependent magnetic field. According to the
idea put forward by Majorana (1932) and developed further by a number of authors (Hight
et al 1977, Sanctuary 1979, Hioe 1987, Kazansky and Ostrovsky 1996), in this case the
problem isexactly reducible to the two-state model(for arbitrary-field time-dependence of
the field) and all varieties of exact solutions available for the latter can be applied. The
other multistate model (with an infinite number of states) reducible to a two-state model was
put forward recently by Demkov and Ostrovsky (1995) and developed further by Demkov
et al (1995).

Among the specific time-dependencies the most natural one seems to be a generalization
of the simplest Landau–Zener case. It presumes a time-dependent Hamiltonian of the form
H(t) = Bt + A, whereA andB are time-independent HermitianN × N matrices which
generally do not commute. We choose the basis of states in which the matrixB is diagonal:
Bjk = βjδjk. The diagonal elements of the Hamiltonian matrixHjj = βj t + εj (εj ≡ Ajj )
are nameddiabatic potential curves. They are linear in the Landau–Zener model with the
slopesβj . The non-diagonal elementsHjk = Ajk ≡ Vjk describe thecoupling between the
diabatic basis states. These couplings are time-independent in the Landau–Zener model.

In general, the Laplace transformation is useful for solving the problems with linear time-
dependence. This transformation plainly reduces the problem to the first-order differential
equation in the case when only one coefficientβj is non-zero. This corresponds to the
Demkov–Osherov model† (Demkov and Osherov 1967 and references therein): one slanted
diabatic potential curve crosses a parallel set of horizontal‡ curves.

The objective of the present paper is to explore a somewhat less evident, exactly
solvable, case known as thebow-tie model. In this model all diagonal elements of the
matrix A are assumed to be zero (εj ≡ 0). Hence all diabatic potential curves cross at the
same moment which is chosen as zero on the time axis. The additional assumption§ which
makes the model solvable refers to the couplings: all states are coupled only to one singled
out (zeroth) state:Vjk = 0 if both k and j differ from zero. It is convenient to make the
zeroth diabatic potential curve horizontal (β0 = 0) by the appropriate phase transformation.

This model received some attention in the literature where the essential advancements
were made. Carroll and Hioe (1985, 1986a, b) motivated its study by applications to quantum
optics associated with an atom driven by lasers. They employed a certain version of Laplace
transformation and obtained the solution for the three-state case (N = 3). Later Brundobler
and Elser (1993) noted that the approach used by Carroll and Hioe could be generalized
to write down the solutions in the form of the contour integrals in the complex plane for
arbitraryN . However, the explicit expressions of the transition probabilities for arbitrary
N could not be derived.

Below we present the complete solution for arbitraryN which in fact looks more
transparent than the solution for theN = 3 case given by Carroll and Hioe (1985, 1986a, b).
From the mathematical point of view the study could be cast into a special generalization of
the Whittaker functions and an analysis of the Stokes phenomenon for the special system of

† The solution of the Demkov–Osherov model was rederived using an alternative method by Kayanuma and
Fukuchi (1985), but only for the single probability that the system remains at the initially populated slanted
diabatic state. Note that these authors incorrectly classified theexact solution provided by Demkov and Osherov
(1967) as approximate.
‡ Of course, a trivial phase transformation makes the horizontal curves slanted also but with the equal slopes.
§ Harmin (1991) considered the more-general bow-tie model in connection with the problem of level mixing in
an intrashell Rydberg manifold by a time-dependent electric field. However, this model does not allow any exact
solution.



TheN -level Landau–Zener-type bow-tie model 6941

first-order differential equations, or equivalently for a single high-order differential equation.
This paper is organized as follows. In section 2 exact analytical solutions are expressed

in terms of contour integrals. In section 3 from these contour integrals explicit asymptotes
of the solutions are derived fort → −∞, and thus we can apply initial conditions to
them. Transition probabilities are finally obtained in section 4 in compact forms. These
results are analysed in section 5 in connection with the Demkov–Osherov model. The new
mathematical aspects we have found are discussed in section 6. Concluding remarks are
provided in section 7.

2. Solution in terms of contour integrals

The following labelling of the diabatic basis states|ψj 〉 is convenient for the subsequent
formulation. We ascribe the subscript 0 to the singled-out horizontal diabatic state which
interacts with all the other states. The other states are labelled by the subscripts of positive
and negative integers. The states with positive slopeβj are labelled by positive subscripts
j in order of increasingβj . The states with negativeβj are labelled by negative indicesj ,
the larger|j | corresponding to the larger|βj |. Namely, we have

. . . β−3 < β−2 < β−1 < β0 < β1 < β2 < . . . . (1)

We avoid the cases of degeneracy of two or more diabatic potential curves. Indeed, the
bases in the degerate subspace could always be chosen so that only one state interacts with
the zeroth state, and all the other states are completely decoupled.

Finally, the Hamiltonian matrix which we deal with here is given by

H00 = 0 Hjj = βj t Hj0 = H0j ≡ Vj (j 6= 0)

Hjk = 0 if k 6= 0 andj 6= 0.
(2)

We presume that the phases of the basis states are chosen so that all the couplingsVj are
real. The general solution of the non-stationary Schrödinger equation is expanded over the
diabatic basis,

|9(t)〉 =
∑
j

cj (t)|ψj 〉 (3)

where the coefficients have to satisfy the following system of equations†:

i
dc0

dt
=
∑
n

Vncn i
dcj
dt
= βtcj + Vjc0 (j 6= 0). (4)

Introducingc0(t) = t c̃0(t) and switching to the new ‘time’ variableτ = 1
2t

2, we obtain

i2τ
dc̃0

dτ
= −ic̃0+

∑
n

Vncn i
dcj
dτ
= βcj + Vj c̃0 (j 6= 0). (5)

The Laplace transformation reduces this system to a single first-order differential equation (as
in the Demkov–Osherov model) which is easily solved. Returning to the original variable,
we obtain the following contour-integral representations (Brundobler and Elser 1993):

c0(t) = Qt
∫
A

du√−u exp

(
−1

2
iut2

)∏
n

(−u+ βn
−u

)ihn

(6)

cj (t) = −QVj
∫
A

du√−u exp

(
−1

2
iut2

)
1

−u+ βj
∏
n

(−u+ βn
−u

)ihn

(j 6= 0) (7)

† Unless indicated otherwise, the sums and products below run over all integer indices labelling the basis states
except zero.
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Figure 1. Branch points, cuts and integration contour att = −∞. This is the case fork = 2.

with hj = V 2
j /(2βj ). Note that the normalization factorQ and the integration contourA

in the plane of the complex-valued variableu are to be the same in all integrals (6), (7).
The complete set of linear independent solutions for the system (4) is obtained by different
choices ofA as discussed in the next section.

3. Linear independent solutions and initial conditions

The integrands in (6) and (7) haveN branch points:βk and 0. In the complex-u plane
we draw the cuts from each of them downwards to−i∞. For each cut we introduce the
corresponding integration contourAk which starts from−i∞, encircles the branch point
βk counterclockwise and goes again to−i∞ (see figure 1). The solution (6), (7) with the
integration over the contourAk is denoted asc(k)j (t).

Below we demonstrate that this solution corresponds to the initial population of thekth
diabatic state. In order to do this we calculatet → −∞ asymptotes of the integrals in (6)
and (7). The principal contribution to the asymptote comes from the vicinity of the branch
point βk, where only the exponential function and the factor(u− βk)ihk are to be retained
in the integrand; all other factors are replaced by their values at the pointu = βk. After
that we come to the standard integral representation for the gamma-function (Gradshteyn
and Ryzhik 1980),

0(z) = − 1

2i sinπz

∫
C
(−t)z−1e−t dt (8)

where the integration contourC in the complext plane starts from+∞, encircles the point
t = 0 counterclockwise and returns to+∞. Finally, thet →−∞ asymptotes are obtained
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for k = 0 as

c
(0)
0 (t) = 2Q(0)

(∏
j<0

eπhj
)√√√√π[1+ exp

(
− 2π

∑
j

hj

)]

×
(∏

j

|βj |ihj
)

exp

(
− i arg0

(
i
∑
j

hj + 1

2

))
D0(t)

c
(0)
j (t) = c(0)0 (t)O(t−1)

(9)

and fork 6= 0

c
(k)
k (t) = 2Q(k)e−iπ/2

(∏
j>k

e−πhj
)√

π [1− exp(−2πhk)]

×
(∏

j

β
−ihj
k

)(∏
j 6=k
|βk − βj |ihj

)
exp(i arg0(ihk))Dk(t)

c
(k)
j (t) = c(k)k (t)O(t−2) (j 6= k)
c
(0)
0 (t) = c(k)k (t)O(t−1).

(10)

HereDj(t) are the standard asymptotic solutions given by

Dj(t) =
(

2

t2

)ihj

exp

(
−1

2
iβj t

2

)
and D0(t) =

(
2

t2

)−i
∑
j hj

. (11)

With the proper choice of the normalization factorsQ(k) we obtain (only the principal
terms in the asymptotes are retained)

c
(k)
j (t →−∞) = δjkDj (t) (12)

which means that the choice of the integration contourAk leads to the solution which
physically corresponds to the initial population ofkth state. These solutions form the
complete set. The formulae for the normalization factors are

Q(0) = 1
2π
−1/2

(∏
j<0

e−πhj
)[

1+ exp

(
− 2π

∑
j

hj

)]−1/2

×
(∏

j

|βj |−ihj

)
exp

(
i arg0

(
i
∑
j

hj + 1
2

))
Q(k) = 1

2π
−1/2

(∏
j>k

eπhj
)

[1− exp(−2πhk)]
−1/2

(∏
j

β
ihj
k

)
×
(∏
j 6=k
|βk − βj |−ihj

)
exp(i arg0(ihk)+ 1

2iπ).

(13)

It is important to note that the factors of the formβ ihk
j contribute to the moduli whenj < 0

(i.e. βj < 0). Note also that the parametershj are positive forj > 0 and negative forj < 0
and that

∏
j<0 eπhj = 1 when there is noβj < 0.

4. Transition probabilities: asymptotic solutions at t→∞

In order to obtain the transition probabilities we have to find the asymptotes of the solutions
c
(k)
j (t) for t → +∞. However, here we encounter a problem. For realt the contour
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integrals (6), (7) have different limits ast → 0− and t → 0+. For the three-state case
Carroll and Hioe (1985, 1986a, b) were able to calculate these limits explicitly and then
to continue the general solution (presented as a linear combination of the basis solutions)
through the pointt = 0 by matching. This became possible because fort → ±0 the
right-hand sides in equations (7) for the three-state problem are expressible in terms of
hypergeometric functions using known integrals of the form (Gradshteyn and Ryzhik 1980)∫ ∞

0
xν−1(β + x)−µ(x + γ )−ρ dx = β−µγ ν−ρB(ν, µ− ν + ρ) 2F1

(
µ, ν;µ+ ρ; 1− γ

β

)
.

(14)

This manipulation is quite tedious, but can be done for the three-state problem. A difficulty
in our context is that this treatment cannot be applied to the general multistate problem
(N > 3).

Here we employ a different approach treatingt as a complex variable. This allows
us to circumvent the singular pointt = 0 and also to develop a general outlook at the
mathematical aspects of the problem.

We present complex-valuedt and the integration variableu as t = |t |eiτ̃ andu = |u|eiϕ

respectively. The steepest descent directionϕ = ϕst for the integrals (6), (7) is governed
by the following relation:ϕst = 3

2π − 2τ̃ , which for τ̃ = π givesϕst = − 1
2π as discussed

above.
As t moves along the semicircular path in the upper half-plane of complext , τ̃ decreases

from π to 0 and consequentlyϕst increases from− 1
2π to 3

2π . This means that the
steepest descent direction (and hence the ends of the integration contours in (6), (7)) is
rotated counterclockwise over 2π . In the course of this rotation the integration contour

Figure 2. Deformation of the integration contour att = +∞ for the kth initial state.
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‘hooks’ on all the branch points of the integrand. Deforming the contour we can present
the final integration path fort → +∞ as a sum of the integrals over the contoursAk
(figure 2). Asymptotic calculations for each contour proceed as above (section 3). The
correct evaluation of the integral in the vicinity of each branch point implies identification
of the related sheet of the Riemann surface. This is straightforwardly achieved by tracing
the deformations of the contour. This is the key feature of the calculations here which does
not pose essential difficulties. Of course, the asymptotes of the solutionsc

(k)
j (t) at t →+∞

are presented as (only principal terms in the asymptotes are retained)

c
(k)
j (t →+∞) = SjkDj (t) (15)

and the probability of the transition from the diabatic statek to the diabatic statej is defined
asPk→j = |Sjk|2. The final results are listed below:

P0→0 =
[

1−
∏
n>0

pn −
∏
n<0

pn

]2

(16)

P0→j = Pj→0 =
(∏
n>j

pn

)
(1− pj )

(∏
n>0

pn +
∏
n<0

pn

)
(j > 0) (17)

P0→j = Pj→0 =
(∏
n<j

pn

)
(1− pj )

(∏
n>0

pn +
∏
n<0

pn

)
(j < 0) (18)

Pj→j =
[

1+
(∏
n>j

pn

)
pj −

∏
n>j

pn

]2

(j > 0) (19)

Pj→k =
(∏
n>j

pn

)(∏
n>k

pn

)
(1− pj )(1− pk) (j > 0, k > 0) (20)

Pj→k =
(∏
n>j

pn

)(∏
n<k

pn

)
(1− pj )(1− pk) (j > 0, k < 0) (21)

Pj→j =
[

1+
(∏
n<j

pn

)
pj −

∏
n<j

pn

]2

(j < 0) (22)

Pj→k =
(∏
n<j

pn

)(∏
n>k

pn

)
(1− pj )(1− pk) (j < 0, k > 0) (23)

Pj→k =
(∏
n<j

pj

)(∏
n<k

pk

)
(1− pj )(1− pk) (j < 0, k < 0) (24)

where

pj = exp(−2π |hj |) = exp

(
−πV

2
j

|βj |

)
. (25)

The unitarity of the transition matrix implies that∑
k>0

Pj→k +
∑
k<0

Pj→k + Pj→0+ Pj→j = 1 (26)∑
j>0

P0→j +
∑
j<0

P0→j + P0→0 = 1. (27)

These relations are easily checked by employing the useful formulae below∑
j>0

[(∏
n>j

e−2πhn

)
(1− e−2πhj )

]
= 1−

∏
n>0

e−2πhn (28)
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j<0

[(∏
n<j

e2πhn

)
(1− e2πhj )

]
= 1−

∏
n<0

e2πhn . (29)

5. Analysis of the results

Equations (16)–(24) give the complete solution of the problem for an arbitrary number
of states. For the three-state case the results obtained by Carroll and Hioe (1986b) are
reproduced.

The characteristic feature of the present model is that all the transition probabilities are
expressed via products of the factorspj and 1−pj . Note thatPj ≡ p2

j is the probability that
the system remains at the initially populated diabatic potential curve in the plain Landau–
Zener model when only two states interact (in our case the interacting states would be
zeroth andj th). The similar situation appears in the Demkov–Osherov (1967) model. In
the latter the structure of the transition probability formulae is particularly simple since
they are factorized into products of the probabilities for transition (Pj ) and non-transition
(1− Pj ). This allowed Demkov and Osherov (1967) to transparently interpret the general
formulae in terms of the pair-wise interactions and transitions. The possibility of this simple
interpretation in the Demkov–Osherov model stems from the fact that the crossings between
the pairs of states are separated at least in the weak-coupling limit. On the contrary, within
the present model such an interpretation is difficult because for all values of the model
parameters the interaction region corresponds to the vicinity oft = 0 whereall N states
cross simultaneouslyand it is not possible to present the time-propagation as the sequence
of pair-wise transitions.

However, just the ‘concentrated’ character of the interaction allows us to think that the
interference effects are not operative in the present model†. This tentatively explains why the
expressions (16)–(24) are still relatively simple, whereas in the more general situation (in the
presence of interference effects) the overall probability would take a complicated function
of the system parameters (couplings and slopes) (Nakamura 1987, Zhu and Nakamura
1996a, b).

As is easily seen from equations (16)–(24), in the diabatic limit (pj → 1) the system
remains with unit probability in the initially populated diabatic state. The adiabatic case
deserves more detailed discussion.

At first we consider theadiabatic potential curvesEad(t), which are defined as the
eigenvalues of the Hamiltonian matrixH(t) at fixed timet . The functionEad(t) is given
implicitly by equation(∏

j

(βj t − Ead)

)[
Ead+

∑
j

V 2
j

βj t − Ead

]
= 0 (30)

(note that this is a reparametrization of equation (11) in the paper by Demkov and Osherov
(1967), since the Hamiltonians in both models have a similar structure but different time-
dependence). Considering the pointt = 0 we see that it has(N − 2) solutionsEad= 0 and
a pair of solutions given by

Ead= ±
√∑

j

V 2
j . (31)

† The absence of the interference effects is characteristic also to the Demkov–Osherov model and for some other
as yet unsolved model which embraces the latter and the bow-tie model, see the discussion by Brundobler and
Elser (1993).
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Figure 3. Adiabatic potential curves in the case ofN = 5 with V1 = V−1 = 0.1,
V2 = V−2 = 0.3, β1 = −β−1 = 1.0, andβ2 = −β−2 = 2.0.

This implies that(N − 2) adiabatic potential curves cross att = 0 with the valueE = 0.
Only two ‘outer’ (i.e. uppermost and lowermost) adiabatic potential curves exhibit the
conventional avoided-crossing pattern. Thus the well known Neumann–Wigner non-crossing
rule for adiabatic potential curves (Landau and Lifshitz 1977) does not hold here due to the
specific structure of the Hamiltonian with sparse couplings†. As an illustration we consider
the ‘symmetric’ case under the reflection with respect toE = 0 for N = 5 (V1 = V−1,
V2 = V−2, β1 = −β−1, β2 = −β−2), which is reduced to a biquadratic equation with the
solutions‡

Ead(t) = ±
[

1
2

(
β2

1t
2+ β2

2t
2+ 2V 2

1 + 2V 2
2

±
√
(β2

1t
2− β2

2t
2+ 2V 2

1 − 2V 2
2 )

2+ 16V 2
1 V

2
2

)]1/2

Ead(t) ≡ 0. (32)

Figure 3 shows the adiabatic potential curves for some values of the parameters. Three
curves cross at the pointt = 0, while two ‘outer’ curves exhibit a pseudocrossing pattern in
agreement with our general conclusion. Interestingly, two slanted ‘inner’ adiabatic curves
are very close to their rectilinear diabatic counterparts, although some difference exists.

Thedynamicsin the adiabatic limitpj → 0 is in correspondence with the potential curve
behaviour. Namely, if the initially populated state corresponds to the minimum (maximum)
slopeβj , then the population is transferred to the diabatic state with maximum (minimum)
value ofβj with unit probability. For all other (‘inner’) curves the formulae (16)–(24) give
unit probability forj ⇒ j transitionin the diabatic basis.

Brundobler and Elser (1993) had put forward (on a semi-empirical basis) the hypothesis
that for the most general structure of the matrixA (see the introduction) the probability that
the system remains in the initially populated diabaticj th state is given by a simple formula§

Pj→j =
∏
k

exp

(
− 2π |Vjk|2
|βj − βk|

)
(33)

provided that this state corresponds to the extremum (maximum or minimum) slopeβj .
This hypothesis is confirmed within the present model. Indeed, if the (horizontal) 0-state

† Since this feature is present only forN > 3, it was not manifested in the three-state case considered by Carroll
and Hioe (1985, 1986a, b).
‡ Note that the solutionE(t) ≡ 0 appears for any number of states in the symmetric case.
§ The product in (29) runs over all values of the indexincluding zero; the notations from the introduction are
used.
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corresponds to the maximum (minimum) slope (i.e. if allβj < 0 or all βj > 0), then the
non-transition probability is

P0→0 =
∏
n

e−4π |hn|. (34)

If some slanted (j th) state corresponds to the maximum (minimum) slope, then

Pj→j = e−4π |hj | (35)

which also agrees with (33).
There are evident common features between the Demkov–Osherov and the present bow-

tie models. First, the structure of the Hamiltonian matrices is similar: in both cases the
non-zero matrix elements are on diagonal, one column and one row. This feature was
used in the derivation of equation (30). The second point is that both problems are solved
by the same general framework of the Laplace method and complex contour integration.
However, in the Demkov–Osherov model the integrand contains time-dependence via the
factor exp(−iut), which obviously makes the complex-valued integration variableu similar
to the energy. Respectively, the branch points correspond to the energy values specific for
the model, namely to the horizontal diabatic potential curves (see the introduction). In the
bow-tie solution, on the other hand, the factor exp(− 1

2iut2) emerges in the integrand, andu
could be interpreted as a variable representing aslopeof the linear diabatic potential curve.
The branch points correspond to the slopes of the actual model diabatic potential curves.
The latter situation seems quite unusual, being specific to the bow-tie model.

6. Mathematical aspects

The standard two-state Landau–Zener model is described by a system of two first-order
differential equations which is equivalent to one second-order differential equation. Zener
(1932) solved the latter in terms of the parabolic cylinder functions. Here, as an illustration,
we write down the expression for the functionc(0)0 (t) in terms of the Whittaker function†
for the case when the slanted potential curve has negative slopeβ:

c
(0)
0 (t) = 2

1
4 t−

1
2 |β|−ih− 1

4 e
1
2πh exp(− 1

4iβt2)W
ih+ 1

4
1
4
(− 1

2iβt2) (36)

which is straightforwardly obtainable from the formulae (6) and (13) using the well known
integral representation (Gradshteyn and Ryzhik 1980)

Wλµ(ξ) = ξµ+
1
2 e−

1
2 ξ

0(µ− λ− 1
2)

∫ ∞
0

e−ξτ τµ−λ−
1
2 (1+ τ)µ+λ− 1

2 dτ. (37)

Note that our derivation for the multistate case has the two-state analogue in the treatment
by Majorana (1932) who did not resort to the special functions but operated with the contour
integrals.

Although theN -state problem is equivalent to anN th order differential equation, it
seems to be more convenient to cast the discussion to the system ofN first-order differential
equations. Comparing (36) and (6), (7) we can say that we have developed a generalization
of the Whittaker functions for the high-order differential equation or the equivalent system
of first-order equations. The generalized functions are defined in the complex-t plane.
The integral representations (6), (7) of these generalized functions are convenient for the
analysis of the asymptotic behaviour. The asymptotes of the linear independent solutions are
expressed as linear combinations of the functionsDj(t) (equation (11)). The coefficients in

† A solution in terms of the Whittaker functions was employed by Wannier (1965).
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these linear combinations differ from sector to sector of thet-plane and vary discontinuously
when the border between the two adjacent sectors is crossed. In this respect we recognize
some sort of generalization of the Stokes phenomenon well known for the second-order
differential equations. The derivation of the transition probabilities given above is equivalent
to the determination of the Stokes constants.

It is easy to understand the positions of the aforementioned sectors and the method for
detailed treatment of the Stokes phenomenon. Our analysis in section 4 in fact means that
we have developed a procedure of analytical continuation of the solutions from the negative
t semi-axis to the positivet semi-axis via the uppert half plane† We have shown that if
the solution fort < 0 is given by the contour integral over the single contourAk, then
for t > 0 the same solutionis given by the integral over a certain complicated contour
which can be represented as a succession of integrations over loops of the formAk but
lying on different sheets of the Riemann surface. This means that the integrals of the form
(6), (7) with A ⇒ Ak for t > 0 and for t < 0 represent in factdifferent solutionsof
the system (4). These integrals are generally discontinuous at the pointt = 0. Note that
Carroll and Hioe (1985, 1986a, b) incorrectly interpreted this situation as discontinuities in
the individual basic solutions of the system (5).

Now consider thekth vector solution (i.e. set of the functionsc(k)j (t) for fixed k and
all j ) which are given by the integrals (6) and (7) with the integration contourAk. As
τ̃ decreases fromπ , the integration contour is rotated respectively (see section 4). For
τ̃ = 3

4π it ‘hooks’ on the branch pointsβn for n > k. This implies that the coefficients in
the asymptotes change discontinuously atτ̃ = 3

4π which is the border of the sector discussed
above. The next discontinuity appears forτ̃ = 1

4π , where the branch pointsβn for n < k

start to contribute to the asymptotic formulae. The more detailed study of asymptotes in the
complex-t plane is possible along these lines, but it is beyond the scope of the present work.

7. Conclusion

The remarkable feature of the exact solution obtained in the present paper is that it contains
an arbitrary (although finite) number of statesN . The similar situation is met for the
Demkov–Osherov model (and also for the spin-j model, see the introduction). In principle
this feature allows us to make a transition to an infinite number of states (N →∞), namely
to a continuous spectrum. This operation was carried out within the Demkov–Osherov
model, where it implies a plain replacement of the dense band of states by a continuum.
Formally, the similar transformation could be carried out also in our expressions (16)–(24).
Consider, for instance, the survival probabilityP0→0 (16). Its continuous analogue could
be written as

P0→0 =
[

1− exp

(
− 2π

∫
βn>0

hn dn

)
− exp

(
− 2π

∫
βn<0
|hn| dn

)]2

. (38)

If the states other than the zeroth are concerned, one has to consider the respective probability
densities in the continuum. In any case, however, the physical interpretation of the continua
in the bow-tie model is not clear, unfortunately.

For the conventional discrete state bow-tie model, the feasibility of physical application
is supported by the most recent paper by Harshawardhan and Agarwal (1997) (published
after submission of the present work). It is devoted to the analysis of population transfer
in the three-level system placed in a frequency-modulated electromagnetic field. Some

† Analytical continuation via the lowert halfplane leads to the same results on thet > 0 semi-axis. This means
that the solutions do not have branch points in the whole complext plane.
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attention is paid to the case of three-level crossing; note that the Hamiltonian structure
exactly corresponds to the bow-tie model. It is also interesting that the specially constructed
diabatization procedure for the potential curves in the three-body Coulomb problem produces
some three-level crossings (Tolstikhinet al 1996; see figure 3).

The mathematical aspects such as the generalization of Whittaker functions touched
upon in section 6 deserve further detailed analyses.
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